Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: evidence from the 2013 Sumatran fires
نویسندگان
چکیده
Trans-boundary haze events in Southeast Asia are associated with large forest and peatland fires in Indonesia. These episodes of extreme air pollution usually occur during drought years induced by climate anomalies from the Pacific (El Niño Southern Oscillation) and Indian Oceans (Indian Ocean Dipole). However, in June 2013--a non-drought year--Singapore's 24-hr Pollutants Standards Index reached an all-time record 246 (rated "very unhealthy"). Here, we show using remote sensing, rainfall records and other data, that the Indonesian fires behind the 2013 haze followed a two-month dry spell in a wetter-than-average year. These fires were short-lived (one week) and limited to a localized area in Central Sumatra (1.6% of Indonesia): burning an estimated 163,336 ha, including 137,044 ha (84%) on peat. Most burning was confined to deforested lands (82%; 133,216 ha). The greenhouse gas (GHG) emissions during this brief, localized event were considerable: 172 ± 59 Tg CO2-eq (or 31 ± 12 Tg C), representing 5-10% of Indonesia's mean annual GHG emissions for 2000-2005. Our observations show that extreme air pollution episodes in Southeast Asia are no longer restricted to drought years. We expect major haze events to be increasingly frequent because of ongoing deforestation of Indonesian peatlands.
منابع مشابه
Current Fire Regimes , Impacts and the Likely Changes – IV : Tropical Southeast Asia
The Southeast Asian region is experiencing some of the world’s highest rates of deforestation and forest degradation, the principle drivers of which are agricultural expansion and wood extraction in combination with an increased incidence of fire. Recent changes in fire regimes in Southeast Asia are indicative of increased human-causd forest disturbance, but El Niño–Southern Oscillation (ENSO) ...
متن کاملFire carbon emissions over maritime southeast Asia in 2015 largest since 1997
In September and October 2015 widespread forest and peatland fires burned over large parts of maritime southeast Asia, most notably Indonesia, releasing large amounts of terrestrially-stored carbon into the atmosphere, primarily in the form of CO2, CO and CH4. With a mean emission rate of 11.3 Tg CO2 per day during Sept-Oct 2015, emissions from these fires exceeded the fossil fuel CO2 release r...
متن کاملThe Open University ’ s repository of research publications and other research outputs Current fire regimes , impacts and the likely changes – IV : tropical Southeast Asia
The Southeast Asian region is experiencing some of the world’s highest rates of deforestation and forest degradation, the principle drivers of which are agricultural expansion and wood extraction in combination with an increased incidence of fire. Recent changes in fire regimes in Southeast Asia are indicative of increased human-causd forest disturbance, but El Niño–Southern Oscillation (ENSO) ...
متن کاملEl Niño and health risks from landscape fire emissions in Southeast Asia
Emissions from landscape fires affect both climate and air quality1. In this study, we combine satellite-derived fire estimates and atmospheric modeling to quantify health effects from fire emissions in Southeast Asia from 1997 to 2006. This region has large interannual variability in fire activity due to coupling between El Niño-induced droughts and anthropogenic land use change2,3. We show th...
متن کاملDerivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands.
During the 1997/98 El Niño-induced drought peatland fires in Indonesia may have released 13-40% of the mean annual global carbon emissions from fossil fuels. One major unknown in current peatland emission estimations is how much peat is combusted by fire. Using a light detection and ranging data set acquired in Central Kalimantan, Borneo, in 2007, one year after the severe peatland fires of 200...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014